各种Tensor operations, 包括transposing, indexing, slicing, mathematical operations, linear algebra, random numbers在<https://pytorch.org/docs/torch>.
Numpy和Tensor之间的转化
在Torch Tensor和NumPy array之间相互转化非常容易。
Torch Tensor和NumPy array会共享内存,所以改变其中一项也会改变另一项。
把Torch Tensor转变成NumPy Array
In [49]:
1 2
a = torch.ones(5) a
Out[49]:
1
tensor([1., 1., 1., 1., 1.])
In [50]:
1 2
b = a.numpy() b
Out[50]:
1
array([1., 1., 1., 1., 1.], dtype=float32)
改变numpy array里面的值。
In [51]:
1 2
b[1] = 2 b
Out[51]:
1
array([1., 2., 1., 1., 1.], dtype=float32)
In [52]:
1
a
Out[52]:
1
tensor([1., 2., 1., 1., 1.])
把NumPy ndarray转成Torch Tensor
In [54]:
1
import numpy as np
In [55]:
1 2 3 4
a = np.ones(5) b = torch.from_numpy(a) np.add(a, 1, out=a) print(a)
1
[2. 2. 2. 2. 2.]
In [56]:
1
b
Out[56]:
1
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
所有CPU上的Tensor都支持转成numpy或者从numpy转成Tensor。
CUDA Tensors
使用.to方法,Tensor可以被移动到别的device上。
In [60]:
1 2 3 4 5 6 7
if torch.cuda.is_available(): device = torch.device("cuda") y = torch.ones_like(x, device=device) x = x.to(device) z = x + y print(z) print(z.to("cpu", torch.double))
for it in range(500): # Forward pass y_pred = model(x) # model.forward() # compute loss loss = loss_fn(y_pred, y) # computation graph print(it, loss.item())
optimizer.zero_grad() # Backward pass loss.backward() # update model parameters optimizer.step()
for it in range(500): # Forward pass y_pred = model(x) # model.forward() # compute loss loss = loss_fn(y_pred, y) # computation graph print(it, loss.item())
optimizer.zero_grad() # Backward pass loss.backward() # update model parameters optimizer.step()
由于模型参数是随机初始化的,未训练的模型输出随机值。我们可以对比真实输出,然后利用误差后传调整模型权重,使得输出更接近与真实输出。如何对比两个概率分布呢?简单采用 cross-entropy或者Kullback-Leibler divergence中的一种。鉴于这是个极其简单的例子,更真实的情况是,使用一个句子作为输入。比如,输入是“je suis étudiant”,期望输出是“i am a student”。在这个例子下,我们期望模型输出连续的概率分布满足如下条件:
import os import numpy as np import nltk from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.layers import LSTM from keras.callbacks import ModelCheckpoint from keras.utils import np_utils from gensim.models.word2vec import Word2Vec
['\ufeffproject gutenberg’s real soldiers of fortune, by richard harding davis\n\nthis ebook is for the use of anyone anywhere at no cost and with\nalmost no restrictions whatsoever.', 'you may copy it, give it away or\nre-use it under the terms of the project gutenberg license included\nwith this ebook or online at www.gutenberg.org\n\n\ntitle: real soldiers of fortune\n\nauthor: richard harding davis\n\nposting date: february 22, 2009 [ebook #3029]\nlast updated: september 26, 2016\n\nlanguage: english\n\ncharacter set encoding: utf-8\n\n*** start of this project gutenberg ebook real soldiers of fortune ***\n\n\n\n\nproduced by david reed, and ronald j. wilson\n\n\n\n\n\nreal soldiers of fortune\n\n\nby richard harding davis\n\n\n\n\n\nmajor-general henry ronald douglas maciver\n\nany sunny afternoon, on fifth avenue, or at night in the _table d’hote_\nrestaurants of university place, you may meet the soldier of fortune who\nof all his brothers in arms now living is the most remarkable.']
In [9]:
1 2 3 4 5 6
corpus = [] for sen in sents: # 针对每个句子,再次进行分词。 corpus.append(nltk.word_tokenize(sen))
/Users/yyg/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:8: DeprecationWarning: Call to deprecated `__getitem__` (Method will be removed in 4.0.0, use self.wv.__getitem__() instead).
构造训练集
In [46]:
1 2 3 4 5 6 7 8 9
raw_input = [item for sublist in corpus for item in sublist] print(len(raw_input)) # 原始语料库里的词语总数 text_stream = [] vocab = w2v_model.wv.vocab # 查看w2v_model生成的词向量 for word in raw_input: if word in vocab: text_stream.append(word) print(len(text_stream)) # 查看去掉低频词后的总的词数,因为min_count把低频词去掉了
1 2
55562 51876
In [47]:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# 处理方式同char级别的文本生成 seq_length = 10 x = [] y = [] for i in range(0, len(text_stream) - seq_length): given = text_stream[i:i + seq_length] predict = text_stream[i + seq_length] x.append([w2v_model[word] for word in given]) y.append(w2v_model[predict])
x = np.reshape(x, (-1, seq_length, 128)) y = np.reshape(y, (-1,128)) print(x.shape) print(y.shape)
1 2 3 4
/Users/yyg/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:8: DeprecationWarning: Call to deprecated `__getitem__` (Method will be removed in 4.0.0, use self.wv.__getitem__() instead). /Users/yyg/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:9: DeprecationWarning: Call to deprecated `__getitem__` (Method will be removed in 4.0.0, use self.wv.__getitem__() instead). if __name__ == '__main__':
/Users/yyg/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:1: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`. """Entry point for launching an IPython kernel.
# 代码注释同丘吉尔的人物传记char级别的文本生成 defpredict_next(input_array): x = np.reshape(input_array, (-1,seq_length,128)) y = model.predict(x) return y
defstring_to_index(raw_input): raw_input = raw_input.lower() input_stream = nltk.word_tokenize(raw_input) res = [] for word in input_stream[(len(input_stream)-seq_length):]: res.append(w2v_model[word]) return res
defy_to_word(y): word = w2v_model.most_similar(positive=y, topn=1) return word
In [56]:
1 2 3 4 5 6
defgenerate_article(init, rounds=30): in_string = init.lower() for i in range(rounds): n = y_to_word(predict_next(string_to_index(in_string))) in_string += ' ' + n[0][0] return in_string
In [58]:
1 2 3
init = 'His object in coming to New York was to engage officers for that service. He came at an moment' article = generate_article(init) print(article) # 语料库较小,可以看到重复了
1 2 3 4
/Users/yyg/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:12: DeprecationWarning: Call to deprecated `__getitem__` (Method will be removed in 4.0.0, use self.wv.__getitem__() instead). if sys.path[0] == '': /Users/yyg/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:16: DeprecationWarning: Call to deprecated `most_similar` (Method will be removed in 4.0.0, use self.wv.most_similar() instead). app.launch_new_instance()
1
his object in coming to new york was to engage officers for that service. he came at an moment battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery battery